Tadeusz Kosciuszko Cracow University of Technology

Course Card

Faculty of Civil Engineering

Field of study: Civil Engineering Study profile: general academic

Study form: full-time Field of study code: BUD

Study cycle: 1st

Specialty: no specialty

1 COURSE INFORMATION

Course name	Hydraulika i hydrologia	
Course name in English	Hydraulics and Hydrology	
Course code	WIL BUD oIS C21 24/25	
Course category	Course category Basic	
No. of ECTS points	No. of ECTS points 2.00	
Semester	2	

2 CLASS TYPE, NUMBER OF HOURS ACCORDING TO THE STUDY PLAN

Semester	Lecture	Class exercise	Laboratory	Computer lab	Design exercise	Seminar
2	15	0	0	0	15	0

3 COURSE OBJECTIVES

Objective 1 The aim of the course is to provide basic knowledge in the field of hydraulics, including: Hydrostatics - pressure distribution in the field of mass forces, practical methods of calculating static loads exerted by a liquid,

Objective 2 Hydrodynamics - calculation of flow parameters in pressure pipelines (calculation of energy losses), elements of pipeline network, calculations for the siphon and pumps' characteristics

Objective 3 Introduction to basic hydrological concepts and formulas including hydrological cycle, basic precipitation formulas, normative flows

4 PREREQUISITES IN TERMS OF KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1 Basic knowledge of physics and mathematics at the academic level

5 LEARNING OUTCOMES

- **LO1 Knowledge** The student knows the mathematical description of the hydrostatic pressure distribution, under- stands its consequence for static load calculations
- **LO2 Skills** The student knows the general flow laws for incompressible liquids, remembers and understands the Bernoulli equation and ditch. continuity
- **LO3 Knowledge** The student knows how to apply practically known flow laws supplemented with additional semi-empirical formulas regarding energy losses, contracting effects, etc.
- LO4 Skills The student learned the calculation methods used to describe uniform flow in open channels

6 COURSE CONTENT

Design exercise		
No.	Subject matter of the course Detailed description of thematic blocks	No. of class hours
P1	Hydrostatics; pressure, pressure distribution, pressure measurement, hydrostatic forces on plane surfaces, forces on curved surfaces.	6
P2	Pipe flow; friction losses, Moody diagram, pressure and energy distribution lines, application of continuity and Bernoullis equations for pipe flow parameters determination.	6
Р3	Open channels flow; application of Manning formula for flow parameter calculation.	2
P4	Visiting hydraulic laboratory; demonstration of Reynolds experiment, siphon, orifice and weir flow.	1

Lecture		
No.	Subject matter of the course Detailed description of thematic blocks	No. of class hours
L1	Principles of hydrostatics; pressure, hydrostatic forces, stability of floating bodies, forces on plane and curved surfaces	4
L2	Basic principles of hydrodynamics; kinematical descriptions of fluid motion, flow governing equations. Pipe flow principles, flow continuity and Bernoullis equations, Darcy-Weisbach equation	4

Lecture		
No.	Subject matter of the course Detailed description of thematic blocks	No. of class hours
L3	Uniform flow in open channels; Chazy-Manning formula.	2
L4	Hydraulics of water engineering structures; weirs and orifices rating curves.	2
L5	Porous material filtration; Darcy law, well and ditch charging.	1
L6	Introduction to hydrology; water cycle, hydrometric measurements, characteristic discharges.	2

7 TEACHING TOOLS

N1 Lectures

N2 Design exercises

8 Student workload

Activity form	Number of hours of activity	
Hours realized in contact with the teacher		
Hours resulting from the study plan	30	
Consultation hours	7	
Exams and tests during session	3	
Hours of autonomous student work		
Preparing for classes, studying literature	7	
Developing results	7	
Preparing of reports, projects presentations, discussion	6	
Total number of hours devoted to the subject	60	
Total number of ECTS points	2.00	

9 Methods of grading

Colloquium grade

Partial grades

F1 Colloquium grade

Summary grade

P1 Colloquium grade

Conditions for passing the course

L1 Colloquium graduation